

RCM Stories From Across Washington

WSU Energy Program Resource Conservation Management June 22, 2022

Zoom Housekeeping

- This webinar is being recorded.
- All attendees are muted and cameras are turned off.
- During Q&A, you may ask questions through the chat or by speaking.
- If you would like to talk, please "raise your hand". We will unmute you, and you must accept the unmute prompt in order to be unmuted.
- If you are experiencing any technical issues, please email Tanya at <u>beaverst@energy.wsu.edu</u>. Please note our limited capacity to address issues while the webinar is running.

This project was supported in part by Grant No. DE-EE0008296 awarded by the U.S. Department of Energy, Energy Efficiency & Renewable Energy Office. Points of view in this document are those of the author and do not necessarily represent the official position or policies of the U.S. Department of Energy, Energy Efficiency & Renewable Energy Office.

Grant funds are administered by the Washington State Energy Office, Washington State Dept. of Commerce

RCM Stories From Across Washington

Meeting Requirements for Building Tune-Ups and Performance Standards

Ian Brown

Resource Conservation Specialist, Seattle Public Schools

Reducing Water Usage at Spokane Falls Community College

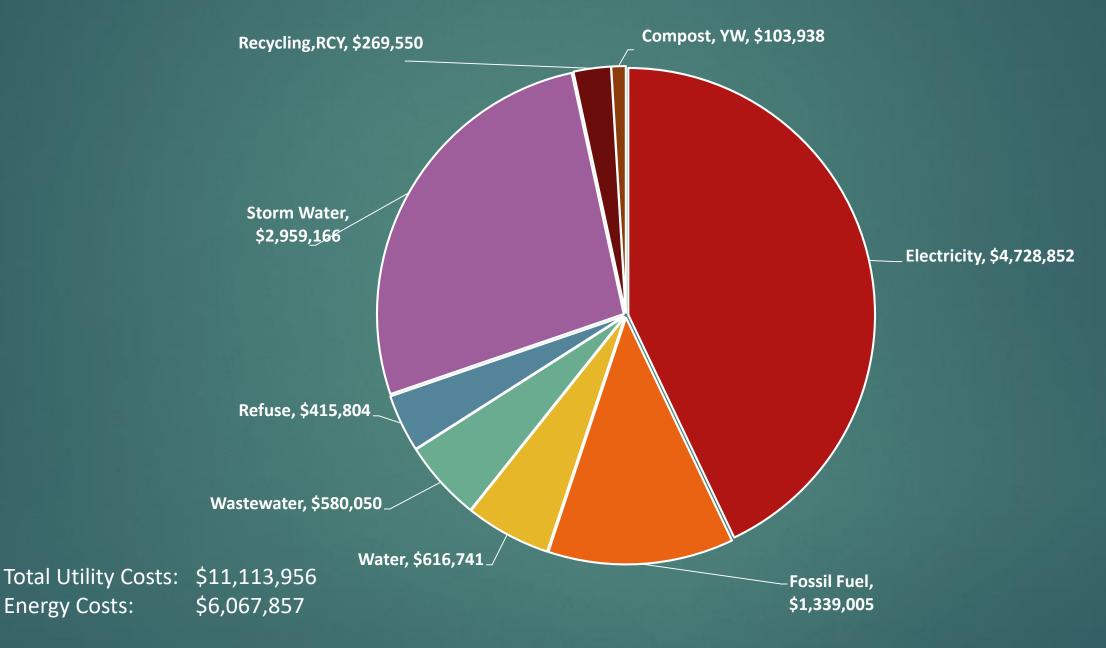
Reed Williams and Andrew Lemberg Resource Conservation Managers, Community Colleges of Spokane

Seattle Public Schools

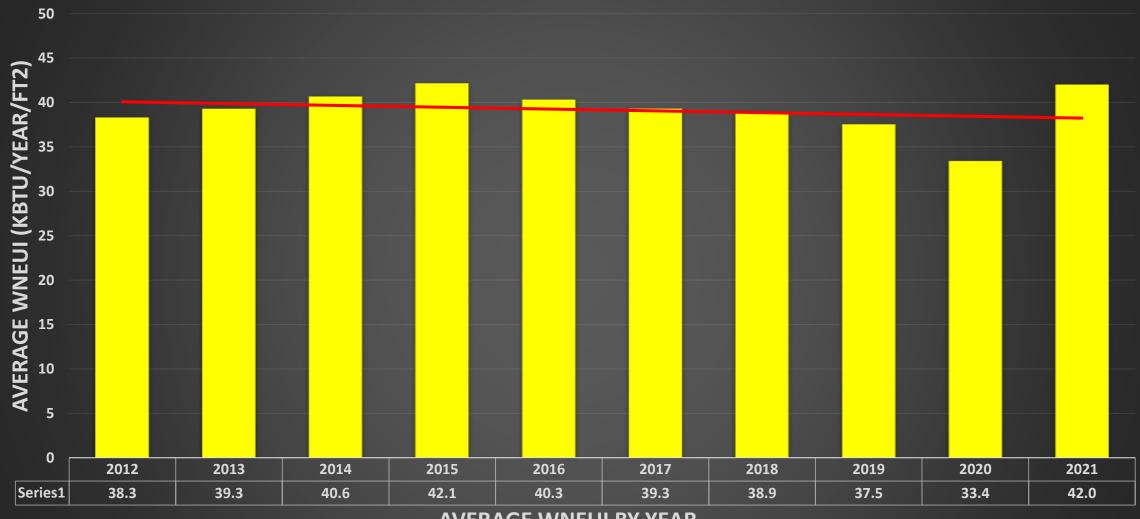
Meeting Requirements for Building Tune-Ups and Performance Standards

Prepared for Washington State University Energy Program

June 22, 2022

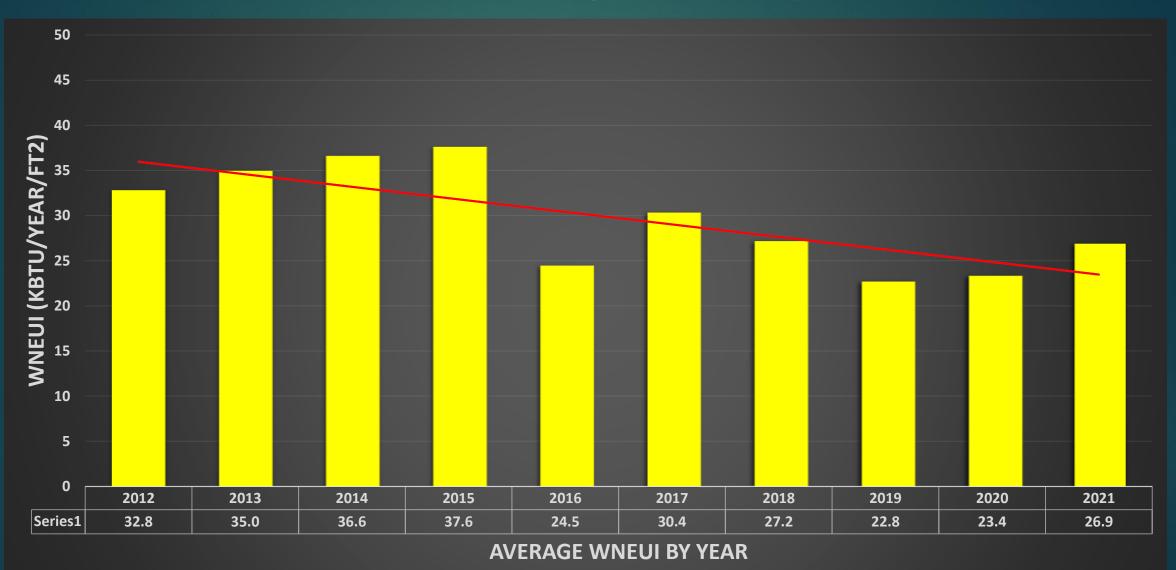

Ian Brown, Resource Conservation Specialist

Seattle Public Schools


Seattle Public Schools (SPS):

- 105 schools, 5 sports complexes, 1 stadium, 1 Central Admin, 1 forest
- 63 Elementary, 12 Middle, 11 K-8, 14 High, 5 alternate sites
- •10,176,986 ft2
- 52,381 students in 2020 (down from 53,627 in 2019, 2.3% decrease)
- •All new buildings will be all-electric (Seattle Energy Code 2018)

Utility Expenses 2019-2020



Weather-Normalized EUI (WNEUI) by Year

AVERAGE WNEUI BY YEAR

All-Electric Buildings WNEUI by Year

Seattle's Office of Sustainability & Environment (OSE) Building Tune-Up Ordinance

Adopted in March 2016

Tune-ups aim to optimize energy and water performance by identifying low- or no-cost actions related to building operations and maintenance

City-wide expected energy savings = 10-15% (Actual results may vary...)

Who needs to do the work: Building Tune-Up Specialists are required to have BOC 2 credentials (or are mechanical engineers)

Recommissioning Team hired and trained for the Building Tune-Up Program

Why In-House?

Subcontractor:

Recommissioning Team (RCx):

- More expensive
- Auditors are only required to sample 12% of HVAC systems
- They only audit don't do the actual work!
- addressing audit points is another task left to building owners
- Two-part process for subcontractors
- Second walk-through needed to confirm required measures have been addressed.
- Program is reiterative; every 4 years the process repeats

- RCx Team fixes most problems at time of audits
- OSE requires only 12% sampling AND correction of HVAC components; RCx Team does 100%
- Continuity and follow-through
- Identify potential upgrades, projects and maintenance concerns
- Able to rapidly increase ventilation rates (COVID)
- For good or bad, RCx Team has been requisitioned to address backlog of work orders
- RCx Team does ALL buildings (OSE cutoff is <50K ft2)
- SPS already maintains EPA Portfolio Manager Benchmarking

Tune-Up Accelerator Program

- SPS was part of Tune Up Accelerator Program
- 102 buildings in the city-wide program

END OF 2019

BUILDINGS 100K FT2

OR SMALLER

- SPS participated with 22 buildings (22%)
- OSE collaborated with Seattle City Light (SCL) for incentives

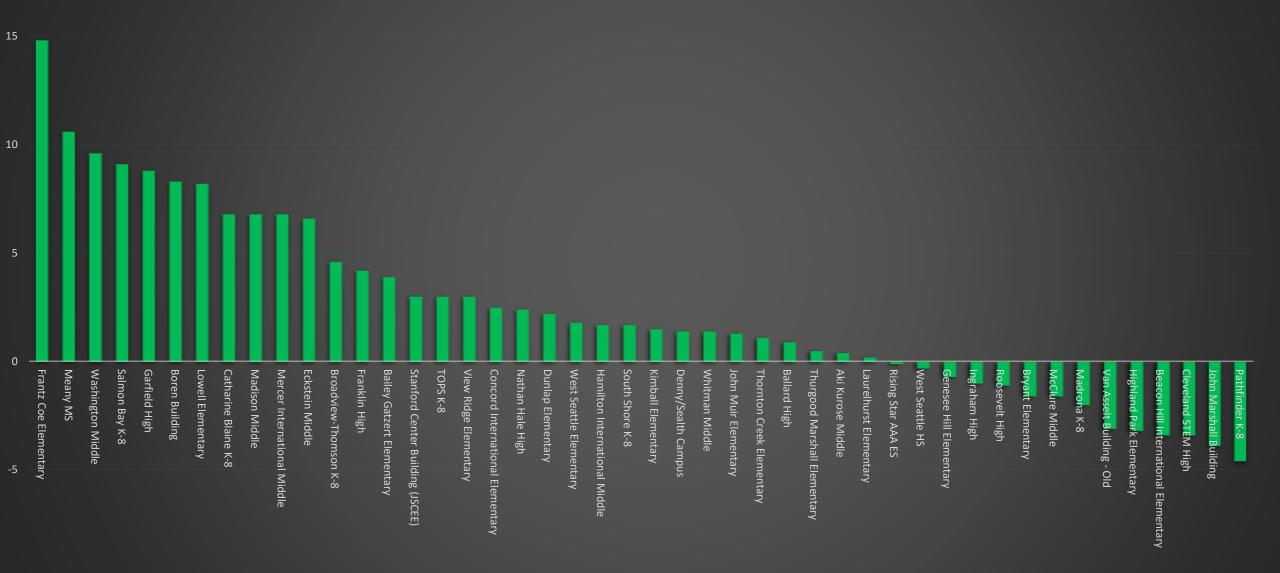
IN PROGRAM

• SPS received \$185,000 from SCL for completion of the early submittals

IN THE ACCELERATOR

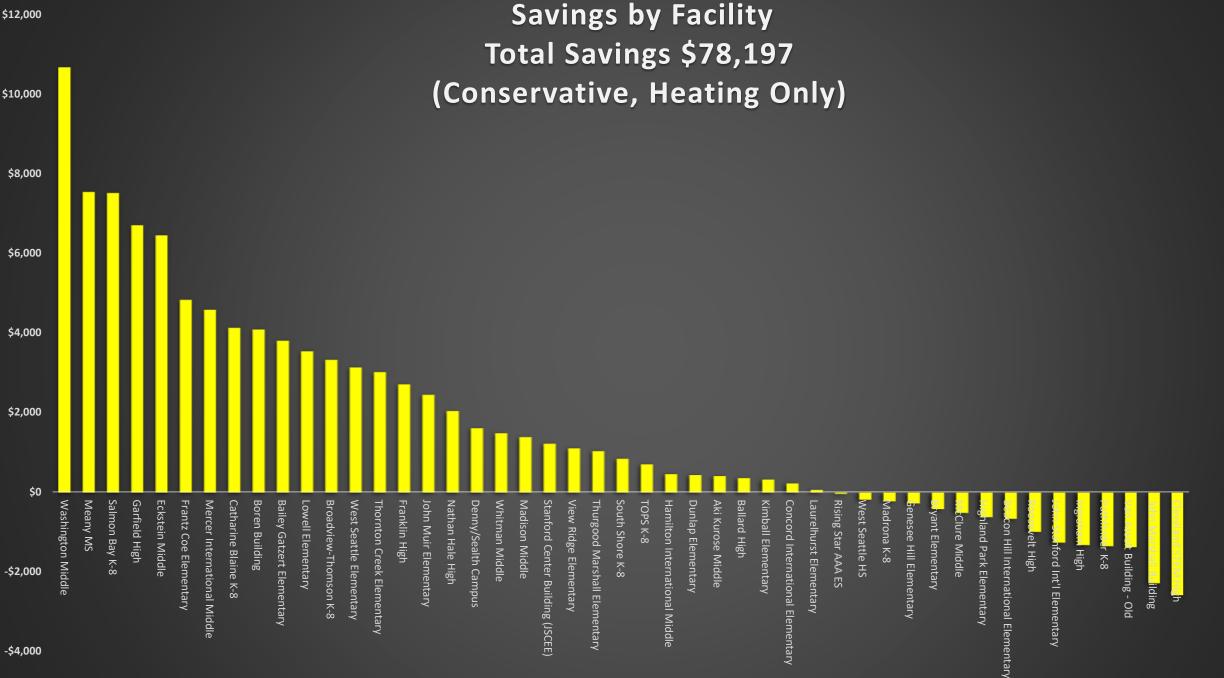
PROGRAM!

PROGRAM AWARDED BUILDINGS BY END OF SPS **\$185,000** 2019!


How did we fare?

There is no M&V for the Tune-Up Program – it is a prescriptive path program, though detailed and using common building operation sense.

So, how can SPS assess the efficacy of the changes made by our RCx Team?


One way is to look at Weather-Normalized EUI's generated by Portfolio Manager.

WNEUI Change by Facility After Tune Up Average EUI Improvement of 2.19 KBTU/Year/Ft2

20

\$12,000

Reasons for lesser savings than the program predicted:

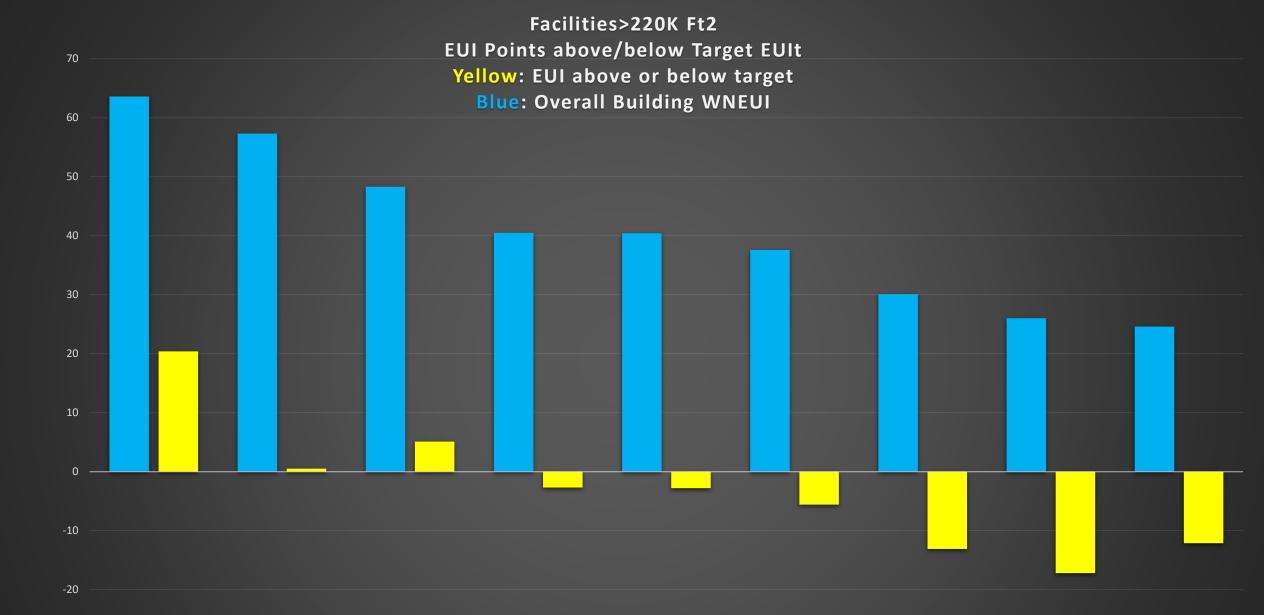
- SPS schedules are set around bell times for schools buildings are required to be up to temperature by bell time
- SPS has standards on dead-bands 68-74 DF for classrooms, 62 DF for gyms/hallways, 65-74 DF for lunchrooms and auditoriums
- Fixing failed ventilation components would improve IAQ, but not necessarily lower energy use (and who anticipated COVID?)
- NOT an energy audit or thorough re-commissioning no engineering, modeling or energy savings calculations.
- Operating adjustments that address demand may save money, but not energy.

How do you measure success?

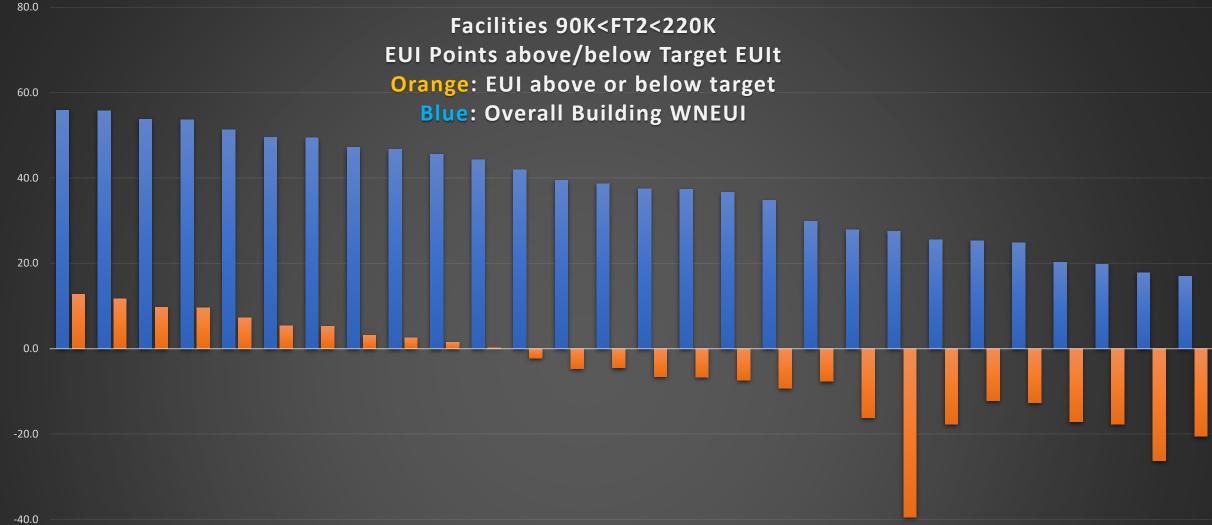
Saving money?

- Saving energy?
- Improving IAQ for students and faculty?
- Reducing GHG emissions?
- Providing better lighting for students?
- Fewer cold calls?
- Correcting deferred maintenance?

Washington State Clean Building Performance Standard (CBPS)

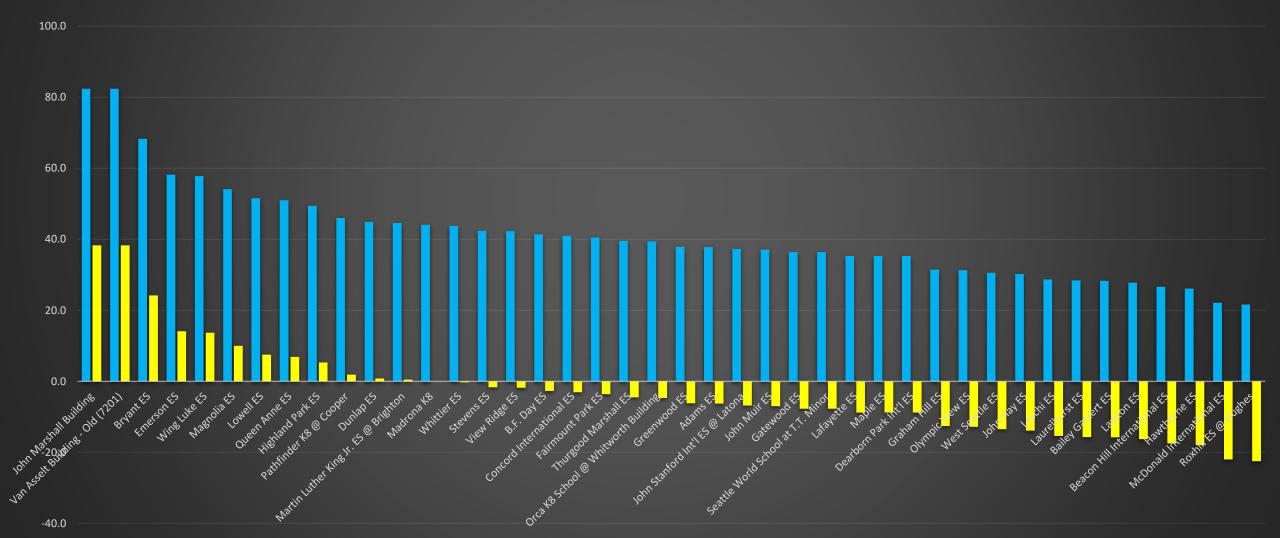

- Relies on EPA's Portfolio Manager for building data
- Requires Energy Management Plan
- EUI targets (EUIt) defined by building types
- ASHRAE 2 audits required buildings that do not meet their targets
- Energy Efficiency Measures (EEMs) by Life Cycle Costs (LCCs) required
- Measurement and Verification (M&V) required
- Buildings must reduce to their EUIts
- Penalties for non-compliance

https://www.commerce.wa.gov/wp-content/uploads/2021/02/Role-and-Responsiblities.pdf

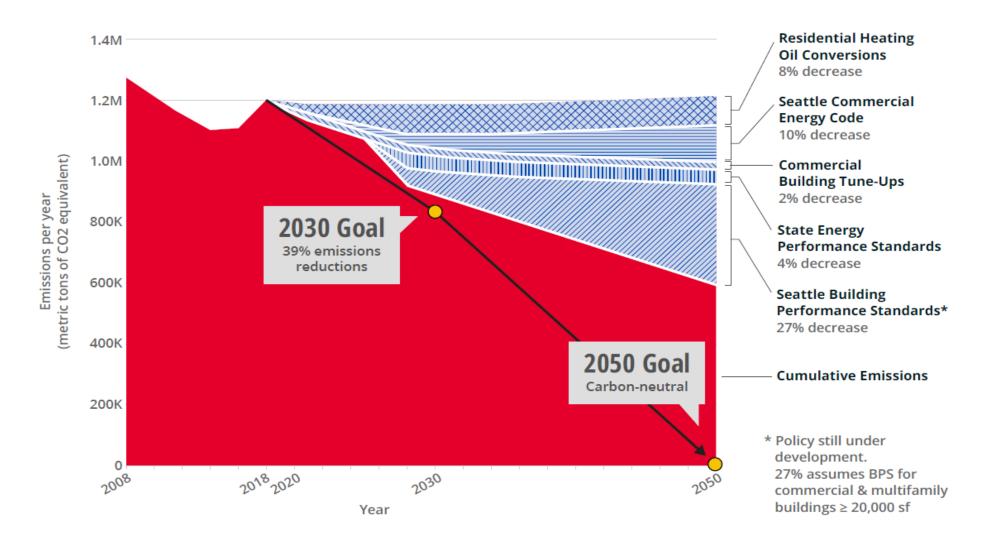

Where are we now with the CBPS?

- After assigning target EUI's (EUIt)
- After generating WNEUI's in Portfolio Manager for all facilities
- Assuming RCx Team info will suffice for O&M routines
- Assuming we collate building HVAC components useful life

Where do our buildings stand in achieving their target EUI's?



-30	Garfield HS	Stanford Center Building (JSCEE)	Ingraham HS	Roosevelt HS	Ballard HS	Denny/Sealth Campus	Nathan Hale HS	Franklin HS	Lincoln HS
WNEUI (kBtu/ft²)	63.6	57.3	48.3	40.5	40.4	37.6	30.1	26.0	24.6
EUI to make up:	20.4	0.5	5.1	-2.7	-2.8	-5.6	-13.1	-17.2	-12.1


ا 0.06-																												
	West Seattle HS	Internat ional	Salmon Bay K8 @ Monroe	Aki Kurose MS	Whitma n MS	Cathari ne Blaine K8	Meany	Broadvi ew- Thomso n K8	Jane Addams	Boren Building STEM K8	Eckstein MS	Hamilto n Internat ional MS	Washin gton MS		TOPS K8@ Seward	McClur	Rising Star (AAA) (8311)	South	Eagle Staff MS	Madiso n MS	Memori al Stadium	Clevela nd STEM HS	Cascadi	Genese e Hill ES	Olympic Hills ES	Hazel Wolf K8 at Pinehur st	Loyal Heights ES	Thornto n Creek ES
WNEUI (kBtu/ft²)	55.9	55.8	53.8	53.7	51.3	49.5	49.4	47.2	46.7	45.6	44.3	41.9	39.4	38.7	37.5	37.4	36.7	34.8	29.8	27.9	27.5	25.5	25.3	24.8	20.3	19.8	17.8	16.9
EUI to make up:	12.7	11.7	9.7	9.6	7.2	5.4	5.3	3.1	2.6	1.5	0.2	-2.2	-4.7	-4.5	-6.6	-6.7	-7.4	-9.3	-7.7	-16.2	-39.5	-17.7	-12.2	-12.7	-17.2	-17.7	-26.3	-20.6

Facilities 50K<FT2<90K EUI Points above/below Target EUIt Yellow: EUI above or below target Blue: Overall Building EUI

Projected Seattle Buildings Emissions Reductions

This diagram illustrates the role that each strategy plays in bringing Seattle to carbon neutrality. Each wedge indicates how emissions are projected to decrease against a business as usual scenario without these actions.

From OSE: https://www.seattle.gov/documents/Departments/OSE/Building%20Energy/OSE_buildings-infographic_combined_Sept2021.pdf

Takeaways

Make sure your Portfolio Manager data is up to date

- Carefully read how to calculate EUIts
- ▶ If buildings are <u>close</u> to their EUIts, what can you do now to fix?
- Start planning NOW for funding and EEM's that will get you to your targets

Consider whether audits will be performed internally, or subbed out

Many engineering firms are gearing up to provide their services

END

Ian A. Brown - Resource Conservation Specialist

Seattle Public Schools

iabrown@seattleschools.org

206 475 2505 cell

206 252 0599 desk

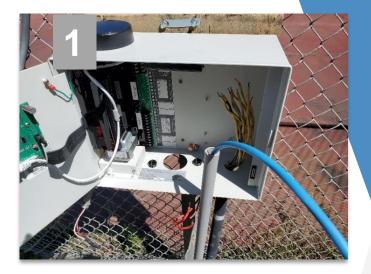
Reducing Water Usage at Spokane Falls CC

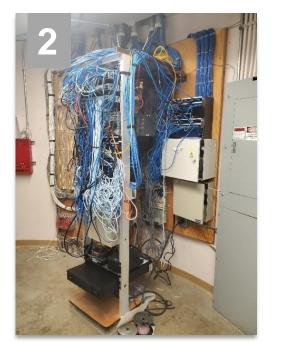
Andrew Lemberg and Reed Williams Resource Conservation Management *Community Colleges of Spokane*

Background Information

- The Community Colleges of Spokane (CCS) is comprised of two main campuses and surrounding satellite locations:
 - Spokane Falls Community College (SFCC) location of smart water irrigation project
 - Spokane Community College (SCC)
 - 50 buildings totaling 2.1 million ft²
 - ► 34 acres of irrigated land at SFCC
 - ► 41% more than SCC
 - Over 90% of SFCC water consumption is utilized for irrigation.

Project Overview


- Replace components of the irrigation system that are excessively watering various green spaces on the SFCC campus.
- Smart Water Irrigation System from Baseline Irrigation Solutions, including:
 - Controllers that are based on live weather and soil conditions
 - New low-spray heads in targeted areas
 - Online dashboard for programing and live troubleshooting



Project Images

- ► 1 Controller box
- ▶ 2 IDF room where CAT wire connection is made
- ▶ 3 Direct burial of CAT wire
- ► 4 Flow meter (hydrometer) installation
- ► 5 Another flowmeter install and wiring example

Project Goals

Reduce water costs and usage by making the irrigation system more efficient

Expected savings of \$40,000 annually

- Achieve annual water reduction of 18 million Gallons
- Maximize operational efficiencies with less need for routine maintenance, reliance on external entities identifying leaks, and regular "spotchecking"

Obstacles and Barriers

- Funding
 - Making the case to executive leadership about the importance of water conservation
- Consideration of infrastructural upgrades
 - Collaboration with IT regarding CAT6a wiring, electrical and plumbing upgrades
- Buy-in from current Grounds crew
 - Acknowledging the shift in both mentality and actual labor of our Grounds workforce

Metrics for Determining Success

- How do we know there will be success upon project completion?
 - Case Studies:
 - City of Boise, Idaho:
 - Experienced close to **70% water savings** compared with previous watering methods
 - City of Twin Falls, Idaho:
 - **50% water savings** since conversion to soil moisture sensor-based system
 - Commercial application in Portland, Oregon:
 - ▶ Five commercial business owners experienced water savings ranging from 31% to 74%.
 - Historical usage data makes changes in trends easily identifiable

Questions?

Contact Information

Andrew Lemberg

Email: <u>andrew.lemberg@ccs.spokane.edu</u>

Reed Williams

Email: <u>reed.williams@ccs.spokane.edu</u>

WSU

Karen Janowitz

WSU Energy Program JanowitzK@energy.wsu.edu

www.energy.wsu.edu